skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Fleck, Trevor J."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Material extrusion (MEX) additive manufacturing has successfully fabricated assembly-free structures composed of different materials processed in the same manufacturing cycle. Materials with different mechanical properties can be employed for the fabrication of bio-inspired structures (i.e., stiff materials connected to soft materials), which are appealing for many fields, such as bio-medical and soft robotics. In the present paper, process parameters and 3D printing strategies are presented to improve the interfacial adhesion between carbon fiber-reinforced nylon (CFPA) and thermoplastic polyurethane (TPU), which are extruded in the same manufacturing cycle using a multi-material MEX setup. To achieve our goal, a double cantilever beam (DCB) test was used to evaluate the mode I fracture toughness. The results show that the application of a heating gun (assembled near the nozzle) provides a statistically significant increase in mean fracture toughness energy from 12.3 kJ/m2 to 33.4 kJ/m2. The underlying mechanism driving this finding was further investigated by quantifying porosity at the multi-material interface using an X-ray computed tomography (CT) system, in addition to quantifying thermal history. The results show that using both bead ironing and the hot air gun during the printing process leads to a reduction of 24% in the average void volume fraction. The findings from the DCB test and X-ray CT analysis agree well with the polymer healing theory, in which an increased thermal history led to an increased fracture toughness at the multi-material interface. Moreover, this study considers the thermal history of each printed layer to correlate the measured debonding energy with results obtained using the reptation theory. 
    more » « less
  2. Fusion-based Material Extrusion (MEX) Additive Manufacturing (AM) processes have been extensively used for the fabrication of smart structures with embedded sensors, proving to have several benefits such as reduction in cost, manufacturing time, and assembly. A major issue negatively affecting 3D printed sensors is related to their poor electrical conductivity, as well as inconsistent electrical performance, which leads to electrical power losses amongst other issues. In the present paper, a set of process parameters (ironing, printing temperature, and infill overlap) has been analyzed by performing a Design of Experiment (DoE) factorial plan to minimize the electrical resistance. The best process parameters configuration involves a remarkable reduction of electrical resistance of 47.9%, as well as an improvement of mechanical properties of 31.9% (ultimate tensile strength), 25.8% (elongation at break) and 28.14% (flexural stress). The microstructure of the obtained results has also been analyzed by employing a high-resolution, X-ray Computed Tomography (X-Ray CT) system showing a reduction of intralayer voids of 19.5%. This work demonstrates a clear correlation between process parameters and the corresponding electrical properties, mechanical properties, and internal microstructure. In the present research, it has been shown that i) it is possible to significantly improve the overall 3D printed sensors performance by process parameter selection, and ii) small changes in the microstructure lead to remarkable improvements in electrical and mechanical performance. 
    more » « less